
Qudex Object Model

Version Information
Previous version: 3.0c

This version: 3.0d

Date: 29/01/13

Changes from 3.0c to 3.0d
Added two new attributes to the “CategoryType” model object. These attributes are

CategoryScheme and CategoryType, which are described in the QuDEx reference model

document (DExT_quali-QuDEx_v03_01_reference_01_01.doc).

Changes from 3.0b to 3.0c
Corrected some typos in the UML modelling notation diagram.

Changes from 3.0 to 3.0b
1) Re-modelled the ResourceComponent, Sources, MemoSources and Documents.

2) Changed the relationship between Document and SourceResource (this has been deleted in

(1) above) to Resource Component” and added documentType attribute with DocumentType

enumeration of "source" and "memoSource".

3) Changed cardinality between ResourceCollection and ResourceComponent from 1..* to

0..* (this reflects the schema)

4) Changed cardinality between Documents and Document from 1..* ot 0..* (this reflects the

schema)

5) Changed name of XMLRange to Node

UML Modelling Notation

ClassG

this class only exists as one of its sub

classes. Its purpose is to group all of the

attributes and associations that are

common to a number of classes.

The sub classes inherit all of the attributes

and associations of the abstract class

This class is sub class of

AbstractClass. It is a

concrete class. It inherits

all of the attributes of

AbstractClass and all of the

assiciations of

AbstractClass to other

classes

This is symbol

specifies that that

ClassG is a sub class

of AbstractClass

AbstractClass

This is an association between ClassA and ClassB There can be

zero or many ClassB associated to a ClassA. There may be a role

assigned to the association (classARole in the example)

The filled in diamond means that ClassB is deemed to a "part of"

ClassA and a ClassB object cannot exist unless it is associated

to a ClassA object, and that if the ClassA object is deleted then

the ClassB object is also deleted.

If the diamond exists but is not filled in, then it means that the

assocation is by reference and so if ClassA is deleted then

ClassB will stilll exist.

ClassA has an association to

ClassC. There can be zero or

one of a ClassC object

associated to a ClassA object.

A ClassC object can exist

without being associated to a

ClassA object

ClassB ClassC

ClassD

ClassA

0..*

+classARole

0..* 0..10..1

1..*1..*

ClassA has an association to ClassD. Normally, associations can

be traversed in both directions (e.g. From ClassA to ClassC and

from ClassC to ClassA). The arrow indicates that the association is

only traversed from ClassA to ClassD.

There must be at least one ClassD object for each ClassA object,

and there can be many.

In a conceptual model these "implementation" decisions are not

usually indicated. However, often such an association indicates a

"reference" and so is useful to model in this way.

ClassE

ClassF
ClassF is sub class of

ClassE. It inherits all of the

attributes of ClassF and all

of the assiciations of

ClassE to other classes

ClassE is, itself, a concrete

class

Identity and Inheritance.

Model Diagram

IdentifiableCore

cdate : Date

mdate : Date

creator : String

label : String

displayLabel : String

language : String

IdentifiableArtefact

id : String

Collection

SegmentComponent
MemoText MemoDocument

Category

CategoryCollection

Memo

MemoCollection

RelationCollection

Segment

SegmentCollection

Code

CodeCollection

ResourceComponent

ResourceCollection

Sources MemoSources

Document

Documents

Text

TextSegment

 Clip

ClipSegment

ImageArea

ImageSegment

Node

XMLSegment

MemoSource Source

Diagram Explanation

There are many classes which have an Id attribute. This is important as this Id is used to

relate two objects together in the Relation Collection – this is shown later.

Some classes also have common attributes in addition to the identity. These inherit from the

Identifiable Core, which itself inherits from Identifiable Artefact.

Data Types

Model Diagram

Diagram Explanation

These data types are used to constrain the possible values of attributes in some of the Qudex

classes – see later.

Qudex Relationhsips

Model Diagram

Collection QudexArchive

status : String0..*0..*

LineText

endLine : Integer

startLine : Integer

CharacterText AudioClip VideoClip

Text

TextSegment

src : String

startOffset : Integer

endOffset : Integer

11

 Clip

ClipSegment

src : String

clipType : ClipType

clipBegin : String

clipEnd : String

otherClipType : String

11

ImageArea

shape : ShapeType

coordinates : String

ImageSegment

src : String

shape : ShapeType

coordinates : String

11

Node

src : String

xpathExpression : String

XMLSegment

11

Code

authority : String

CodeCollection

0..*0..*

MemoCollection

MemoDocument

src : String

MemoText

text : String

Memo

0..*0..*

0..*0..*0..*0..*

SegmentComponent

Segment

11

SegmentCollection

0..*0..*

CategoryCollection

Category

0..*0..*

0..*

+referencedCategory

0..*

IdentifiableArtefact

id : String

ObjectRelation

objectType : ObjectType

relationName : RelationType

otherRelationName : String

0..1
+sourceObject

0..1 0..1
+targetObject

0..1

RelationCollection

0..*0..*

Documents

ResourceCollection

0..10..1

Sources

0..10..1

Source

0..*0..*

MemoSources

0..10..1

MemoSource

0..*0..*

Document

documentType : DocumentType

0..*0..*

0..*

+referencedDocument

0..*

ResourceComponent

size : String

location : String

locType : LocationType

otherLocType : String

checksumType : ChecksumType

otherChecksumType : String

checksumValue : String

mimeType : String

resourceType : ResourceType

otherResourceType : String

11

+referencedResource

Diagram Explanation

This model is an object oriented representation of the Qudex schema. Where appropriate the

names of attributes and elements are taken from the equivalent construct in the schema.

One objective of this model is to discover commonalities between the objects in Qudex and

to ensure these can share common properties. Therefore, in many cases two or more classes

are sub classes of a class that contains the common components.

